Pairwise one-way ANOVA

Deprecated TASK
Deprecated since the version : 0.3.1
This task is deprecated
Typing name :  TASK.gws_stats.PairwiseOneWayAnova Brick :  gws_stats

Test that two groups have the same population mean

Compute the one-way ANOVA test for pairwise samples, from a given reference sample.

The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes. It is a parametric version of the Kruskal-Wallis test.

  • Input: a table containing the sample measurements, with the name of the samples.

  • Output: a table listing the one-way ANOVA F statistic, and the p-value for each pairwise comparison testing.

  • Config Parameters:

  • "column_names": The columns used for pairwise comparison. By default, the first three columns are used.

Note: the ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.

  1. The samples are independent.
  2. Each sample is from a normally distributed population.
  3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity. If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test or the Alexander-Govern test although with some loss of power.

For more details, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html

Input

Table
The input table

Output

Result
The output result

Configuration

preselected_column_names

Optional

The names of column to pre-select for comparison. By default, the first 500 columns are used

Type : ListMaximum occurrences number : -1

name

Optional

The name of the column(s) to pre-select

Type : string

is_regex

Optional

Set True if it is a text pattern (regular expression), False otherwise

Type : bool

reference_column

Optional

The column used as reference for pairwise comparison. Only this column is compared with the others.

Type : string

row_tag_key

Optional Advanced parameter

The key of the row tag (representing the group axis) along which one would like to compare each column. This parameter is not used if a `reference column` is given.

Type : string

adjust_pvalue

Optional Advanced parameter

Adjust p-values for multiple tests.

Type : ListMaximum occurrences number : 1

method

Optional Advanced parameter

The method used to adjust (correct) p-values

Type : stringDefault value : bonferroni

alpha

Optional Advanced parameter

FWER, family-wise error rate. Default is 0.05

Type : floatDefault value : 0.05