Menu
Introduction
Getting Started
Use cases
Cell Culture App
Technical documentations
Version
Publication date

Sep 19, 2024

Confidentiality
Public
Reactions
0
Share

Spline Growth Rate Inference

TASK
80 times
100 %
1 minute, 18 seconds
Typing name :  TASK.gws_plate_reader.SplineGrowthRateInference Brick :  gws_plate_reader

Infer maximum growth rate from time-series data using spline smoothing with cross-validation

[Generated by Task Expert Agent]

Infers the maximum growth rate from time-series absorbance data using non-parametric spline smoothing with cross-validation.

Method

Unlike parametric models (e.g., logistic curves), this approach:

  • Makes no assumptions about the growth curve shape
  • Uses univariate splines to smooth the data
  • Optimizes the smoothing parameter s via K-Fold cross-validation
  • Computes growth rate as the maximum of the spline's first derivative

Process

  1. For each well, tests multiple smoothing parameters
  2. Performs K-Fold CV to find optimal smoothing (minimizing MSE)
  3. Fits best spline on full data
  4. Computes derivative (instantaneous growth rate)
  5. Extracts maximum growth rate and corresponding time

Inputs

  • table: Time-series data with time in first column, wells in subsequent columns

Outputs

  • parameters: Table with inferred parameters (Best_S, Max_Growth_Rate, Max_Growth_Time)
  • growth_curves_plot: Plot showing original data, smoothed curves, and derivative
  • growth_rate_comparison: Bar chart comparing maximum growth rates across wells

Configuration

  • n_splits: Number of K-Fold cross-validation splits (default: 5)
  • s_min: Minimum smoothing parameter to test (default: 0.01)
  • s_max: Maximum smoothing parameter to test (default: 100.0)
  • n_s_values: Number of smoothing values to test (default: 500)

Advantages

  • Flexible for non-standard growth patterns
  • No parametric assumptions
  • Robust to noise via optimized smoothing

Notes

This method is complementary to logistic fitting. Use when:

  • Growth curves don't follow logistic pattern
  • You need only growth rate (not full curve parameters)
  • Data has complex or multi-phase growth

Input

Time-series data
Table with time in first column and well absorbance data in subsequent columns

Output

Growth rate parameters
Table containing optimal smoothing parameter, max growth rate, and time for each well
Growth curves plot
Plot showing raw data, smoothed spline, and derivative (growth rate)
Growth rate comparison
Bar chart comparing maximum growth rates across wells

Configuration

n_splits

Optional

Number of K-Fold cross-validation splits

Type : intDefault value : 5

s_min

Optional

Minimum smoothing parameter to test (lower = less smoothing)

Type : floatDefault value : 0.01

s_max

Optional

Maximum smoothing parameter to test (higher = more smoothing)

Type : floatDefault value : 100

n_s_values

Optional

Number of smoothing parameter values to test

Type : intDefault value : 500
Shine Logo
Technical bricks to reuse or customize

Have you developed a brick?

Share it to accelerate projects for the entire community.