Menu
Introduction
Getting Started
Use cases
Cell Culture App
Technical documentations
Version
Publication date

Sep 19, 2024

Confidentiality
Public
Reactions
0
Share

BiolectorXT Load Data

TASK
1384 times
94 %
3 seconds, 315 milliseconds
Typing name :  TASK.gws_plate_reader.BiolectorXTLoadData Brick :  gws_plate_reader

Load and process BiolectorXT data with quality control visualization

[Generated by Task Expert Agent]

Load and process BiolectorXT data from raw measurements and metadata files.

Overview

This task integrates BiolectorXT data from raw measurements and metadata to create a comprehensive dataset for microplate analysis. It handles data parsing, well labeling, quality control visualization, and generates statistics about data completeness.

Input Files Required

1. Raw Data Table (raw_data)

Table containing raw measurement data from BiolectorXT with columns:

  • Well: Well identifier (e.g., "A01", "B02")
  • Filterset: Filter/channel name (e.g., "Biomass", "pH", "DO")
  • Time: Measurement time in seconds
  • Cal: Calibrated measurement value
  • Additional metadata columns may be present

2. Metadata Folder (folder_metadata)

Folder containing JSON metadata file(s) ending with 'BXT.json':

  • Channels: List of measurement channels/filters
  • Microplate: Well configuration
    • CultivationLabels: Wells used for cultivation
    • ReservoirLabels: Wells used as reservoirs
  • Layout: Well label descriptions
    • CultivationLabelDescriptionsMap: Descriptions for cultivation wells
    • ReservoirLabelDescriptionsMap: Descriptions for reservoir wells
  • Comment: Experiment comment/description
  • Name: Experiment name
  • UserName: User who created the experiment
  • LastModifiedAt: Last modification date

3. Plate Layout (Optional) (plate_layout)

JSONDict containing custom well labels and additional metadata:

  • Keys: Well identifiers (e.g., "A1", "A01")
  • Values: Dict with label key and optional additional metadata
  • Overrides metadata labels if provided

Processing Steps

  1. Metadata Extraction: Reads BXT.json file from metadata folder
  2. Data Parsing: Transforms raw data from long to wide format
    • Groups by Filterset to separate different measurement channels
    • Creates intermediate tables with wells as columns
    • Handles both microfluidics (C01-F08) and standard (A01-F08) layouts
  3. Data Restructuring: Pivots data to create one table per well
    • Each table contains time column and all measurement channels
    • Filters out wells with no data (all NaN)
  4. Well Labeling: Merges labels from metadata and optional plate layout
  5. Quality Control: Tracks well data availability
    • Cultivation wells
    • Reservoir wells
    • Labeled wells
  6. Tagging: Adds comprehensive tags from metadata
    • Batch (experiment/plate name) and sample (well ID)
    • Experiment name, comment, user, date
    • Raw data source
    • Well-specific labels and metadata
  7. Statistics: Generates metadata summary table with well counts

Outputs

1. Parsed Data Tables (parsed_data_tables)

A ResourceSet containing one Table per well (batch/sample combination):

  • Table Name: Well identifier (e.g., "A01", "B02", "C03")
  • Columns:
    • Temps_en_h: Time in hours
    • One column per measurement channel (e.g., "Biomass", "pH", "pO2", "DO")
  • Resource Tags:
    • batch: Experiment/plate name (from metadata Name field)
    • sample: Well identifier (e.g., "A01")
    • label: Well label/description (if available)
    • comment: Experiment comment
    • name: Experiment name
    • user_name: User who created the experiment
    • date: Last modification date
    • raw_data: Raw data table name
    • biolector_download: Download tag (if present in raw data)
    • Additional custom metadata from plate_layout

2. Venn Diagram (venn_diagram) - Optional

A PlotlyResource containing an interactive Venn diagram showing:

  • 3 Overlapping Circles: Cultivation, Reservoir, Labeled
  • Circle Labels: Show count of wells in each category
  • Center Label: Shows count of fully characterized wells (all 3 categories)
  • Color Coding:
    • Blue: Cultivation wells
    • Green: Reservoir wells
    • Purple: Labeled wells

3. Metadata Summary Table (metadata_summary) - Optional

A Table containing experiment-level statistics:

  • Columns:
    • metric: Metric name
    • value: Metric value
  • Metrics:
    • Total channels/filters
    • Total wells
    • Cultivation wells count
    • Reservoir wells count
    • Labeled wells count
    • Experiment name
    • User name
    • Comment
    • Last modified date

Data Quality

Well Type Detection

The task automatically identifies:

  • Cultivation wells: From metadata CultivationLabels
  • Reservoir wells: From metadata ReservoirLabels
  • Labeled wells: Wells with non-empty labels from metadata or plate layout

Microfluidics Detection

Automatically detects microfluidics mode:

  • Checks if "A01" is present in well identifiers
  • If not present: Microfluidics mode (C01-F08 wells)
  • If present: Standard mode (A01-F08 wells)

Use Cases

  1. Quality Control: Use Venn diagram to assess well labeling completeness
  2. Data Exploration: Browse parsed data with proper well labels
  3. Batch Processing: Process multiple experiments with consistent structure
  4. Dashboard Preparation: Provides clean, tagged data ready for visualization
  5. Downstream Analysis: Standardized format for filtering, analysis tasks

Example Workflow

[BiolectorXT Download] ──┬──> [Raw Table]
                         └──> [Metadata Folder]
                                  │
                                  │
[Plate Layout JSON] ─────────────┼──> BiolectorXTLoadData ──┬──> [Well Tables] ──> Filter/Analysis
                                                              ├──> [Venn Diagram] ──> QC Report
                                                              └──> [Metadata Summary] ──> Stats

Example Output Structure

For a plate with 3 wells (A01, A02, B01) and 2 measurements (Biomass, pH):

ResourceSet containing 3 tables:

Table "A01":
  Temps_en_h | Biomass | pH
  0.0        | 0.123   | 7.2
  0.5        | 0.156   | 7.1
  1.0        | 0.198   | 7.0

Table "A02":
  Temps_en_h | Biomass | pH
  0.0        | 0.115   | 7.3
  0.5        | 0.142   | 7.2
  ...

Notes

  • All JSON files must be UTF-8 encoded
  • Metadata file must end with 'BXT.json'
  • Well identifiers are normalized (e.g., "A1" → "A01")
  • Wells with no data (all NaN) are excluded from the output
  • Time is provided in hours (Temps_en_h)
  • Each table represents one well with all its measurements
  • Output format is compatible with filtering and analysis tasks
  • Plate layout overrides metadata labels when provided
  • Tags include batch (experiment name) and sample (well ID) for easy filtering

Comparison with BiolectorXTDataParser

This task differs from BiolectorXTDataParser:

  • Different output structure: One table per well instead of one table per channel
  • Added features:
    • Venn diagram for data availability visualization
    • Metadata summary table with experiment statistics
    • Batch/sample tagging for consistent data organization
  • Enhanced documentation with usage examples
  • Consistent naming with other load tasks (e.g., FermentalgLoadData)

Input

Medium composition table
Table with medium compositions (Medium, Component1, Component2, ...)
Optional

Output

Parsed data tables resource set
One table per well with all measurement channels as columns
Venn diagram of well data availability
Visual representation of cultivation, reservoir, and labeled wells
Optional
Metadata table for ML
Table with well metadata for feature extraction
Optional
Medium composition table
Table with unique medium compositions (output when medium_table provided as input)
Optional

Configuration

plate_names

Optional

Custom names for each plate. Leave empty to use default names (plate_0, plate_1, etc.). Must match the number of input plates if provided.

Type : listDefault value : 
Shine Logo
Technical bricks to reuse or customize

Have you developed a brick?

Share it to accelerate projects for the entire community.