Menu
Introduction
Getting Started
Use cases
Technical documentations
Version
Publication date

Jul 10, 2025

Confidentiality
Public
Reactions
0
Share

Random Forest Regressor

TASK
Typing name :  TASK.gws_design_of_experiments.RandomForestRegressorTask Brick :  gws_design_of_experiments

Random Forest Regression Task with automatic hyperparameter tuning.

This task performs Random Forest regression with cross-validation to find optimal hyperparameters (n_estimators and max_depth). It provides comprehensive outputs including metrics, feature importances, and visualization plots.

Inputs: - data: Input table containing features and target variable

Outputs: - summary_table: Performance metrics (R², RMSE) for train and test sets - vip_table: Feature importance scores ranked by importance with correlation signs - plot_estimators: Cross-validation performance vs hyperparameters - vip_plot: Bar plot of feature importances colored by correlation sign - plot_train_set: Predicted vs true values for training set - plot_test_set: Predicted vs true values for test set

Configuration: - target: Name of the target column to predict - columns_to_exclude: List of column names to exclude from analysis (optional) - test_size: Proportion of data to use for testing (0.0 to 1.0)

Input

Input Data
2d excel like table

Output

Summary Table
2d excel like table
Variable Importance Table
2d excel like table
Estimators Plot
Plotly resource
Variable Importance Plot
Plotly resource
Train Predictions Plot
Plotly resource
Test Predictions Plot
Plotly resource

Configuration

target

Type : string

columns_to_exclude

Optional

List of column names to exclude from RandomForest analysis

Type : list

test_size

Optional

Proportion of the dataset to include in the test split (between 0.0 and 1.0).

Type : floatDefault value : 0.2
Technical bricks to reuse or customize

Have you developed a brick?

Share it to accelerate projects for the entire community.