Back to bricks list
Introduction
Technical Documentation
Tasks
Streamlit conda agent
Version

Streamlit conda agent

TASK
Typing name :  TASK.gws_core.StreamlitCondaAgent Brick :  gws_core

Agent to generate a streamlit app dashboard in a conda environment

Agent to generate a streamlit app dashboard.

Warning: It is recommended to use code snippets comming from trusted sources.

Here is the general documentation for agent (including how to use the parameters): https://constellab.community/bricks/gws_core/latest/doc/developer-guide/agent/getting-started/69820653-52e0-41ba-a5f3-4d9d54561779

Here is the documentation of the agent: https://constellab.community/bricks/gws_core/latest/doc/developer-guide/agent/env-agent/c6acb3c3-2a7c-44cd-8fb2-ea1beccdbdcc

More information about streamlit: https://streamlit.io

If a resource list or set is provided, the resources will be flatten and added to the streamlit app. The order of the resources of a resource set will not be kept.

Input

Resource
Optional

Output

Streamlit app
Streamlit dashboard app

Configuration

params

Optional

HEHEL ES MECS

Type : dynamicDefault value : [object Object]

env

Optional

YAML configuration of the conda environment (contains the 'streamlit' package)

Type : yaml_code_paramDefault value : name: .venv channels: - conda-forge dependencies: - python=3.10 - streamlit==1.41.1 - pandas==2.2.2 - plotly==5.22.0

code

Optional

Code of the streamlit app to run

Type : python_code_paramDefault value : # This is a template for a streamlit agent. # This generates an app with one dataframe as input. Then the user can select 2 columns to plot a scatter plot. import plotly.express as px import streamlit as st from pandas import DataFrame, read_csv # Your Streamlit app code here st.title("Dashboard example") # show a table from file_path which is a csv file full width if source_paths: df: DataFrame = read_csv(source_paths[0], header=0, index_col=0, sep=',') # show the dataframe st.dataframe(df) # add a select widget with the columns names with no default value # set the selectbox side by side col1, col2 = st.columns(2) with col1: x_col = st.selectbox("Select x column", options=df.columns, index=0) with col2: y_col = st.selectbox("Select y column", options=df.columns, index=1) if x_col and y_col: # Generate a scatter plot with plotly express fig = px.scatter(df, x=x_col, y=y_col) st.plotly_chart(fig)