Back to bricks list
Introduction
Technical Documentation
Other Classes
Typing TypingStyle
Version

TypingStyle

ModelDTO class.

Attributes

background_color: Optionalicon_color: Optionalicon_technical_name: stricon_type: TypingIconType

Functions

__INIT__

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:
NameTypeDefault valueDescription
dataAny
CLONE
Return type:
TypingStyle
CLONE_WITH_OVERRIDES

Method to clone the style and override some values

Parameters:
NameTypeDefault valueDescription
icon_technical_namestr Technical name of the icon if provided, the icon_type must also be provided, defaults to none , optional
icon_typeTypingIconType Type of the icon if provided, the icon_technical_name must also be provided, defaults to none , optional
background_colorstr Background color, defaults to none , optional
icon_colorTypingIconColor Icon color, defaults to none , optional
Return type:
TypingStyle
COPY

Returns a copy of the model.

!!! warning "Deprecated" This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)

Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns: A copy of the model with included, excluded and updated fields as specified.

Parameters:
NameTypeDefault valueDescription
includeAbstractSetIntStr | MappingIntStrAny | None
excludeAbstractSetIntStr | MappingIntStrAny | None
updateDict[str, Any] | None
deepbool False
Return type:
Model
COPY_FROM_STYLE
Parameters:
NameTypeDefault valueDescription
styleTypingStyle
DICT
Parameters:
NameTypeDefault valueDescription
includeIncEx
excludeIncEx
by_aliasbool False
exclude_unsetbool False
exclude_defaultsbool False
exclude_nonebool False
Return type:
Dict[str, Any]
FILL_EMPTY_VALUES

Method to fill the background color and icon color if they are not set.

JSON
Parameters:
NameTypeDefault valueDescription
includeIncEx
excludeIncEx
by_aliasbool False
exclude_unsetbool False
exclude_defaultsbool False
exclude_nonebool False
encoderCallable[[Any], Any] | None PydanticUndefined
models_as_dictbool PydanticUndefined
dumps_kwargsAny
Return type:
str
MODEL_COPY

Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#model_copy

Returns a copy of the model.

Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to True to make a deep copy of the model.

Returns: New model instance.

Parameters:
NameTypeDefault valueDescription
updatedict[str, Any] | None
deepbool False
Return type:
Model
MODEL_DUMP

Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args: mode: The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A dictionary representation of the model.

Parameters:
NameTypeDefault valueDescription
modeLiteral['json', 'python'] | str python
includeIncEx
excludeIncEx
contextdict[str, Any] | None
by_aliasbool False
exclude_unsetbool False
exclude_defaultsbool False
exclude_nonebool False
round_tripbool False
warningsbool | Literal['none', 'warn', 'error'] True
serialize_as_anybool False
Return type:
dict[str, Any]
MODEL_DUMP_JSON

Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic's to_json method.

Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns: A JSON string representation of the model.

Parameters:
NameTypeDefault valueDescription
indentint | None
includeIncEx
excludeIncEx
contextdict[str, Any] | None
by_aliasbool False
exclude_unsetbool False
exclude_defaultsbool False
exclude_nonebool False
round_tripbool False
warningsbool | Literal['none', 'warn', 'error'] True
serialize_as_anybool False
Return type:
str
MODEL_POST_INIT

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameters:
NameTypeDefault valueDescription
_BaseModel__contextAny
TO_JSON_DICT

Convert a ModelDTO to a json dictionary. This dict can be serialized.

Return type:
dict
TO_JSON_STR

Convert a ModelDTO to a json string.

Return type:
str
CONSTRUCT - @classmethod
Parameters:
NameTypeDefault valueDescription
_fields_setset[str] | None
valuesAny
Return type:
Model
FROM_JSON - @classmethod

Create a ModelDTO from a json.

Parameters:
NameTypeDefault valueDescription
json_dict
Return type:
BaseModelDTOType
FROM_JSON_LIST - @classmethod

Create a list of ModelDTO from a list of json.

Parameters:
NameTypeDefault valueDescription
json_listlist
Return type:
List
FROM_JSON_STR - @classmethod

Create a ModelDTO from a string json.

Parameters:
NameTypeDefault valueDescription
str_jsonstr
Return type:
BaseModelDTOType
FROM_ORM - @classmethod
Parameters:
NameTypeDefault valueDescription
objAny
Return type:
Model
FROM_RECORD - @classmethod

Create a dict of ModelDTO from a dict of json.

Parameters:
NameTypeDefault valueDescription
json_dictdict
Return type:
Dict
MODEL_CONSTRUCT - @classmethod

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Args: _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns: A new instance of the Model class with validated data.

Parameters:
NameTypeDefault valueDescription
_fields_setset[str] | None
valuesAny
Return type:
Model
MODEL_JSON_SCHEMA - @classmethod

Generates a JSON schema for a model class.

Args: by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications mode: The mode in which to generate the schema.

Returns: The JSON schema for the given model class.

Parameters:
NameTypeDefault valueDescription
by_aliasbool True
ref_templatestr #/$defs/{model}
schema_generatortype[GenerateJsonSchema] <class 'pydantic.json_schema.GenerateJsonSchema'>
modeJsonSchemaMode validation
Return type:
dict[str, Any]
MODEL_PARAMETRIZED_NAME - @classmethod

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args: params: Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns: String representing the new class where params are passed to cls as type variables.

Raises: TypeError: Raised when trying to generate concrete names for non-generic models.

Parameters:
NameTypeDefault valueDescription
paramstuple[type[Any], ...]
Return type:
str
MODEL_REBUILD - @classmethod

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args: force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns: Returns None if the schema is already "complete" and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

Parameters:
NameTypeDefault valueDescription
forcebool False
raise_errorsbool True
_parent_namespace_depthint 2
_types_namespacedict[str, Any] | None
Return type:
bool | None
MODEL_VALIDATE - @classmethod

Validate a pydantic model instance.

Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises: ValidationError: If the object could not be validated.

Returns: The validated model instance.

Parameters:
NameTypeDefault valueDescription
objAny
strictbool | None
from_attributesbool | None
contextdict[str, Any] | None
Return type:
Model
MODEL_VALIDATE_JSON - @classmethod

Usage docs: https://docs.pydantic.dev/2.7/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

Raises: ValueError: If json_data is not a JSON string.

Parameters:
NameTypeDefault valueDescription
json_datastr | bytes | bytearray
strictbool | None
contextdict[str, Any] | None
Return type:
Model
MODEL_VALIDATE_STRINGS - @classmethod

Validate the given object contains string data against the Pydantic model.

Args: obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns: The validated Pydantic model.

Parameters:
NameTypeDefault valueDescription
objAny
strictbool | None
contextdict[str, Any] | None
Return type:
Model
PARSE_FILE - @classmethod
Parameters:
NameTypeDefault valueDescription
pathstr | Path
content_typestr | None
encodingstr utf8
protoDeprecatedParseProtocol | None
allow_picklebool False
Return type:
Model
PARSE_OBJ - @classmethod
Parameters:
NameTypeDefault valueDescription
objAny
Return type:
Model
PARSE_RAW - @classmethod
Parameters:
NameTypeDefault valueDescription
bstr | bytes
content_typestr | None
encodingstr utf8
protoDeprecatedParseProtocol | None
allow_picklebool False
Return type:
Model
SCHEMA - @classmethod
Parameters:
NameTypeDefault valueDescription
by_aliasbool True
ref_templatestr #/$defs/{model}
Return type:
Dict[str, Any]
SCHEMA_JSON - @classmethod
Parameters:
NameTypeDefault valueDescription
by_aliasbool True
ref_templatestr #/$defs/{model}
dumps_kwargsAny
Return type:
str
UPDATE_FORWARD_REFS - @classmethod
Parameters:
NameTypeDefault valueDescription
localnsAny
VALIDATE - @classmethod
Parameters:
NameTypeDefault valueDescription
valueAny
Return type:
Model
CHECK_BACKGROUND_COLOR - @staticmethod
Parameters:
NameTypeDefault valueDescription
background_colorstr
Return type:
str
CHECK_ICON_COLOR - @staticmethod
Parameters:
NameTypeDefault valueDescription
icon_colorTypingIconColor
Return type:
TypingIconColor
COMMUNITY_ICON - @staticmethod

Use an icon from the community icon library. List of available icons are here : https://constellab.community/icons

            If not defined the color is calculated based on background color to be visible. defaults to None
Parameters:
NameTypeDefault valueDescription
icon_technical_namestr Technical name of the icon
background_colorstr Background color of the typing as hex color code, defaults to none , optional
icon_colorOptional Icon color (black or white) when displayed over the background color. [typingiconcolor], optional
Return type:
TypingStyle
COMMUNITY_IMAGE - @staticmethod

Use an image from the community image library. List of available images are here : https://constellab.community/icons

Parameters:
NameTypeDefault valueDescription
icon_technical_namestr Technical name of the image
background_colorstr Background color of the typing, defaults to none , optional
Return type:
TypingStyle
DEFAULT_PROTOCOL - @staticmethod
Return type:
TypingStyle
DEFAULT_RESOURCE - @staticmethod
Return type:
TypingStyle
DEFAULT_TASK - @staticmethod
Return type:
TypingStyle
DEFAULT_VIEW - @staticmethod
Return type:
TypingStyle
GET_CONTRAST_COLOR - @staticmethod
Parameters:
NameTypeDefault valueDescription
colorstr
Return type:
TypingIconColor
MATERIAL_ICON - @staticmethod

Use an icon from the material icon library. List of available icons are here : https://fonts.google.com/icons?icon.set=Material+Icons

            If not defined the color is calculated based on background color to be visible. defaults to None
Parameters:
NameTypeDefault valueDescription
material_icon_namestr
background_colorstr Background color of the typing as hex color code, defaults to none , optional
icon_colorOptional Icon color (black or white) when displayed over the background color [typingiconcolor], optional
Return type:
TypingStyle