SpaceHierarchyObjectSearchParams
Dictionnary containing information to filter and order a search
:param TypedDict: [description] :type TypedDict: [type]
filtersCriteria: listsortsCriteria: list[gws_core.core.classes.search_builder.SearchSortCriteria] | NoneCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
AnystrSearchOperatorAnyAdd a filter to search for specific last modified at
SearchOperatordatetimeAdd a filter to search for specific names
SearchOperatorstrAdd a filter to search for specific object types (file or folder)
SearchOperatorUnionAdd a filter to search for specific parent ID
SearchOperatorstrAdd a filter to search for specific tag
SearchOperatorTagAdd a filter to search for specific tags
SearchOperatorlistAdd a filter to search for specific user ID
SearchOperatorstrReturns a copy of the model.
!!! warning "Deprecated"
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns: A copy of the model with included, excluded and updated fields as specified.
AbstractSetIntStr | MappingIntStrAny | NoneAbstractSetIntStr | MappingIntStrAny | NoneDict[str, Any] | Nonebool - FalseSelfIncEx | NoneIncEx | Nonebool - Falsebool - Falsebool - Falsebool - FalseDict[str, Any]strgws_core.core.classes.search_builder.SearchFilterCriteria | NonestrAnystrboolIncEx | NoneIncEx | Nonebool - Falsebool - Falsebool - Falsebool - FalseCallable[[Any], Any] | None - PydanticUndefinedbool - PydanticUndefinedAnystr!!! abstract "Usage Documentation"
model_copy
Returns a copy of the model.
!!! note
The underlying instance's [__dict__][object.dict] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Args:
update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
Returns: New model instance.
Mapping[str, Any] | Nonebool - FalseSelf!!! abstract "Usage Documentation"
model_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
mode: The mode in which to_python should run.
If mode is 'json', the output will only contain JSON serializable types.
If mode is 'python', the output may contain non-JSON-serializable Python objects.
include: A set of fields to include in the output.
exclude: A set of fields to exclude from the output.
context: Additional context to pass to the serializer.
by_alias: Whether to use the field's alias in the dictionary key if defined.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of None.
exclude_computed_fields: Whether to exclude computed fields.
While this can be useful for round-tripping, it is usually recommended to use the dedicated
round_trip parameter instead.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback: A function to call when an unknown value is encountered. If not provided,
a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A dictionary representation of the model.
Literal['json', 'python'] | str - pythonIncEx | NoneIncEx | NoneAny | Nonebool | Nonebool - Falsebool - Falsebool - Falsebool - Falsebool - Falsebool | Literal['none', 'warn', 'error'] - TrueCallable[[Any], Any] | Nonebool - Falsedict[str, Any]!!! abstract "Usage Documentation"
model_dump_json
Generates a JSON representation of the model using Pydantic's to_json method.
Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
ensure_ascii: If True, the output is guaranteed to have all incoming non-ASCII characters escaped.
If False (the default), these characters will be output as-is.
include: Field(s) to include in the JSON output.
exclude: Field(s) to exclude from the JSON output.
context: Additional context to pass to the serializer.
by_alias: Whether to serialize using field aliases.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of None.
exclude_computed_fields: Whether to exclude computed fields.
While this can be useful for round-tripping, it is usually recommended to use the dedicated
round_trip parameter instead.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback: A function to call when an unknown value is encountered. If not provided,
a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A JSON string representation of the model.
int | Nonebool - FalseIncEx | NoneIncEx | NoneAny | Nonebool | Nonebool - Falsebool - Falsebool - Falsebool - Falsebool - Falsebool | Literal['none', 'warn', 'error'] - TrueCallable[[Any], Any] | Nonebool - FalsestrOverride this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
AnystrSearchOperatorAnystrlistConvert a ModelDTO to a json dictionary. This dict can be serialized.
dictConvert a ModelDTO to a json string.
strset[str] | NoneAnySelfCreate a ModelDTO from a json.
dictBaseModelDTOTypeCreate a list of ModelDTO from a list of json.
listlistCreate a ModelDTO from a string json.
strBaseModelDTOTypeAnySelfCreate a dict of ModelDTO from a dict of json.
dictdictCreates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
!!! note
model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
an error if extra values are passed, but they will be ignored.
Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,
this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute.
Otherwise, the field names from the values argument will be used.
values: Trusted or pre-validated data dictionary.
Returns:
A new instance of the Model class with validated data.
set[str] | NoneAnySelfGenerates a JSON schema for a model class.
Args: by_alias: Whether to use attribute aliases or not. ref_template: The reference template. union_format: The format to use when combining schemas from unions together. Can be one of:
- `'any_of'`: Use the [`anyOf`](https://json-schema.org/understanding-json-schema/reference/combining#anyOf)
keyword to combine schemas (the default).
- `'primitive_type_array'`: Use the [`type`](https://json-schema.org/understanding-json-schema/reference/type)
keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive
type (`string`, `boolean`, `null`, `integer` or `number`) or contains constraints/metadata, falls back to
`any_of`.
schema_generator: To override the logic used to generate the JSON schema, as a subclass of
`GenerateJsonSchema` with your desired modifications
mode: The mode in which to generate the schema.
Returns: The JSON schema for the given model class.
bool - Truestr - #/$defs/{model}type[GenerateJsonSchema] - <class 'pydantic.json_schema.GenerateJsonSchema'>JsonSchemaMode - validationLiteral['any_of', 'primitive_type_array'] - any_ofdict[str, Any]Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Args:
params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int],
the value (str, int) would be passed to params.
Returns:
String representing the new class where params are passed to cls as type variables.
Raises: TypeError: Raised when trying to generate concrete names for non-generic models.
tuple[type[Any], ...]strTry to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Args:
force: Whether to force the rebuilding of the model schema, defaults to False.
raise_errors: Whether to raise errors, defaults to True.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to None.
Returns:
Returns None if the schema is already "complete" and rebuilding was not required.
If rebuilding was required, returns True if rebuilding was successful, otherwise False.
bool - Falsebool - Trueint - 2MappingNamespace | Nonebool | NoneValidate a pydantic model instance.
Args:
obj: The object to validate.
strict: Whether to enforce types strictly.
extra: Whether to ignore, allow, or forbid extra data during model validation.
See the [extra configuration value][pydantic.ConfigDict.extra] for details.
from_attributes: Whether to extract data from object attributes.
context: Additional context to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Raises: ValidationError: If the object could not be validated.
Returns: The validated model instance.
Anybool | NoneExtraValues | Nonebool | NoneAny | Nonebool | Nonebool | NoneSelf!!! abstract "Usage Documentation" JSON Parsing
Validate the given JSON data against the Pydantic model.
Args:
json_data: The JSON data to validate.
strict: Whether to enforce types strictly.
extra: Whether to ignore, allow, or forbid extra data during model validation.
See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context: Extra variables to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Returns: The validated Pydantic model.
Raises:
ValidationError: If json_data is not a JSON string or the object could not be validated.
str | bytes | bytearraybool | NoneExtraValues | NoneAny | Nonebool | Nonebool | NoneSelfValidate the given object with string data against the Pydantic model.
Args:
obj: The object containing string data to validate.
strict: Whether to enforce types strictly.
extra: Whether to ignore, allow, or forbid extra data during model validation.
See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context: Extra variables to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Returns: The validated Pydantic model.
Anybool | NoneExtraValues | NoneAny | Nonebool | Nonebool | NoneSelfstr | Pathstr | Nonestr - utf8DeprecatedParseProtocol | Nonebool - FalseSelfAnySelfstr | bytesstr | Nonestr - utf8DeprecatedParseProtocol | Nonebool - FalseSelfbool - Truestr - #/$defs/{model}Dict[str, Any]bool - Truestr - #/$defs/{model}AnystrConvert a list of ModelDTO to a list of json dictionaries.
listlistAnyAnySelf