Class to manipulate the rich text paragraph text (including variables)
text: str
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError
][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self
is explicitly positional-only to allow self
as a field name.
Any
Returns a copy of the model.
!!! warning "Deprecated"
This method is now deprecated; use model_copy
instead.
If you need include
or exclude
, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns: A copy of the model with included, excluded and updated fields as specified.
AbstractSetIntStr | MappingIntStrAny | None
AbstractSetIntStr | MappingIntStrAny | None
Dict[str, Any] | None
bool
- False
Model
IncEx
IncEx
bool
- False
bool
- False
bool
- False
bool
- False
Dict[str, Any]
BeautifulSoup
str
BeautifulSoup
str
Get the type of the block
Check if the paragraph is empty
bool
IncEx
IncEx
bool
- False
bool
- False
bool
- False
bool
- False
Callable[[Any], Any] | None
- PydanticUndefined
bool
- PydanticUndefined
Any
str
Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#model_copy
Returns a copy of the model.
Args:
update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True
to make a deep copy of the model.
Returns: New model instance.
dict[str, Any] | None
bool
- False
Model
Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
mode: The mode in which to_python
should run.
If mode is 'json', the output will only contain JSON serializable types.
If mode is 'python', the output may contain non-JSON-serializable Python objects.
include: A set of fields to include in the output.
exclude: A set of fields to exclude from the output.
context: Additional context to pass to the serializer.
by_alias: Whether to use the field's alias in the dictionary key if defined.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of None
.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [PydanticSerializationError
][pydantic_core.PydanticSerializationError].
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A dictionary representation of the model.
Literal['json', 'python'] | str
- python
IncEx
IncEx
dict[str, Any] | None
bool
- False
bool
- False
bool
- False
bool
- False
bool
- False
bool | Literal['none', 'warn', 'error']
- True
bool
- False
dict[str, Any]
Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's to_json
method.
Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
include: Field(s) to include in the JSON output.
exclude: Field(s) to exclude from the JSON output.
context: Additional context to pass to the serializer.
by_alias: Whether to serialize using field aliases.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of None
.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [PydanticSerializationError
][pydantic_core.PydanticSerializationError].
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A JSON string representation of the model.
int | None
IncEx
IncEx
dict[str, Any] | None
bool
- False
bool
- False
bool
- False
bool
- False
bool
- False
bool | Literal['none', 'warn', 'error']
- True
bool
- False
str
Override this method to perform additional initialization after __init__
and model_construct
.
This is useful if you want to do some validation that requires the entire model to be initialized.
Any
Replace the variable in the rich text content text
str
ReplaceWithBlockResultDTO
Replace the variable in the rich text content text
str
str
bool
- False
Convert a ModelDTO to a json dictionary. This dict can be serialized.
dict
Convert a ModelDTO to a json string.
str
Convert the paragraph to markdown
str
set[str] | None
Any
Model
Create a ModelDTO from a json.
dict
BaseModelDTOType
Create a list of ModelDTO from a list of json.
list
List
Create a ModelDTO from a string json.
str
BaseModelDTOType
Any
Model
Create a dict of ModelDTO from a dict of json.
dict
Dict
Get the variable json attribute
str
Get the variable tag name
str
Creates a new instance of the Model
class with validated data.
Creates a new model setting __dict__
and __pydantic_fields_set__
from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
!!! note
model_construct()
generally respects the model_config.extra
setting on the provided model.
That is, if model_config.extra == 'allow'
, then all extra passed values are added to the model instance's __dict__
and __pydantic_extra__
fields. If model_config.extra == 'ignore'
(the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct()
, having model_config.extra == 'forbid'
does not result in
an error if extra values are passed, but they will be ignored.
Args: _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
Returns:
A new instance of the Model
class with validated data.
set[str] | None
Any
Model
Generates a JSON schema for a model class.
Args:
by_alias: Whether to use attribute aliases or not.
ref_template: The reference template.
schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema
with your desired modifications
mode: The mode in which to generate the schema.
Returns: The JSON schema for the given model class.
bool
- True
str
- #/$defs/{model}
type[GenerateJsonSchema]
- <class 'pydantic.json_schema.GenerateJsonSchema'>
JsonSchemaMode
- validation
dict[str, Any]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Args:
params: Tuple of types of the class. Given a generic class
Model
with 2 type variables and a concrete model Model[str, int]
,
the value (str, int)
would be passed to params
.
Returns:
String representing the new class where params
are passed to cls
as type variables.
Raises: TypeError: Raised when trying to generate concrete names for non-generic models.
tuple[type[Any], ...]
str
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Args:
force: Whether to force the rebuilding of the model schema, defaults to False
.
raise_errors: Whether to raise errors, defaults to True
.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to None
.
Returns:
Returns None
if the schema is already "complete" and rebuilding was not required.
If rebuilding was required, returns True
if rebuilding was successful, otherwise False
.
bool
- False
bool
- True
int
- 2
dict[str, Any] | None
bool | None
Validate a pydantic model instance.
Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
Raises: ValidationError: If the object could not be validated.
Returns: The validated model instance.
Any
bool | None
bool | None
dict[str, Any] | None
Model
Usage docs: https://docs.pydantic.dev/2.7/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
Returns: The validated Pydantic model.
Raises:
ValueError: If json_data
is not a JSON string.
str | bytes | bytearray
bool | None
dict[str, Any] | None
Model
Validate the given object contains string data against the Pydantic model.
Args: obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
Returns: The validated Pydantic model.
Any
bool | None
dict[str, Any] | None
Model
str | Path
str | None
str
- utf8
DeprecatedParseProtocol | None
bool
- False
Model
Any
Model
str | bytes
str | None
str
- utf8
DeprecatedParseProtocol | None
bool
- False
Model
bool
- True
str
- #/$defs/{model}
Dict[str, Any]
bool
- True
str
- #/$defs/{model}
Any
str
Convert a list of ModelDTO to a list of json dictionaries.
List
List
Any
Any
Model