RichTextBlock
ModelDTO class.
data: dictid: strtype: RichTextBlockTypeCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
AnyReturns a copy of the model.
!!! warning "Deprecated"
    This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns: A copy of the model with included, excluded and updated fields as specified.
AbstractSetIntStr | MappingIntStrAny | NoneAbstractSetIntStr | MappingIntStrAny | NoneDict[str, Any] | Nonebool - FalseModelIncExIncExbool - Falsebool - Falsebool - Falsebool - FalseDict[str, Any]RichTextBlockDataBaseIncExIncExbool - Falsebool - Falsebool - Falsebool - FalseCallable[[Any], Any] | None - PydanticUndefinedbool - PydanticUndefinedAnystrUsage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#model_copy
Returns a copy of the model.
Args:
    update: Values to change/add in the new model. Note: the data is not validated
        before creating the new model. You should trust this data.
    deep: Set to True to make a deep copy of the model.
Returns: New model instance.
dict[str, Any] | Nonebool - FalseModelUsage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
    mode: The mode in which to_python should run.
        If mode is 'json', the output will only contain JSON serializable types.
        If mode is 'python', the output may contain non-JSON-serializable Python objects.
    include: A set of fields to include in the output.
    exclude: A set of fields to exclude from the output.
    context: Additional context to pass to the serializer.
    by_alias: Whether to use the field's alias in the dictionary key if defined.
    exclude_unset: Whether to exclude fields that have not been explicitly set.
    exclude_defaults: Whether to exclude fields that are set to their default value.
    exclude_none: Whether to exclude fields that have a value of None.
    round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
        "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A dictionary representation of the model.
Literal['json', 'python'] | str - pythonIncExIncExdict[str, Any] | Nonebool - Falsebool - Falsebool - Falsebool - Falsebool - Falsebool | Literal['none', 'warn', 'error'] - Truebool - Falsedict[str, Any]Usage docs: https://docs.pydantic.dev/2.7/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's to_json method.
Args:
    indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
    include: Field(s) to include in the JSON output.
    exclude: Field(s) to exclude from the JSON output.
    context: Additional context to pass to the serializer.
    by_alias: Whether to serialize using field aliases.
    exclude_unset: Whether to exclude fields that have not been explicitly set.
    exclude_defaults: Whether to exclude fields that are set to their default value.
    exclude_none: Whether to exclude fields that have a value of None.
    round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
        "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A JSON string representation of the model.
int | NoneIncExIncExdict[str, Any] | Nonebool - Falsebool - Falsebool - Falsebool - Falsebool - Falsebool | Literal['none', 'warn', 'error'] - Truebool - FalsestrOverride this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
AnySet the data of the block
RichTextBlockDataBaseConvert a ModelDTO to a json dictionary. This dict can be serialized.
dictConvert a ModelDTO to a json string.
strConvert the block to markdown
strset[str] | NoneAnyModelCreate a ModelDTO from a json.
dictBaseModelDTOTypeCreate a list of ModelDTO from a list of json.
listListCreate a ModelDTO from a string json.
strBaseModelDTOTypeAnyModelCreate a dict of ModelDTO from a dict of json.
dictDictCreates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
!!! note
    model_construct() generally respects the model_config.extra setting on the provided model.
    That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__
    and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
    Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
    an error if extra values are passed, but they will be ignored.
Args: _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
Returns:
    A new instance of the Model class with validated data.
set[str] | NoneAnyModelGenerates a JSON schema for a model class.
Args:
    by_alias: Whether to use attribute aliases or not.
    ref_template: The reference template.
    schema_generator: To override the logic used to generate the JSON schema, as a subclass of
        GenerateJsonSchema with your desired modifications
    mode: The mode in which to generate the schema.
Returns: The JSON schema for the given model class.
bool - Truestr - #/$defs/{model}type[GenerateJsonSchema] - <class 'pydantic.json_schema.GenerateJsonSchema'>JsonSchemaMode - validationdict[str, Any]Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Args:
    params: Tuple of types of the class. Given a generic class
        Model with 2 type variables and a concrete model Model[str, int],
        the value (str, int) would be passed to params.
Returns:
    String representing the new class where params are passed to cls as type variables.
Raises: TypeError: Raised when trying to generate concrete names for non-generic models.
tuple[type[Any], ...]strTry to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Args:
    force: Whether to force the rebuilding of the model schema, defaults to False.
    raise_errors: Whether to raise errors, defaults to True.
    _parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
    _types_namespace: The types namespace, defaults to None.
Returns:
    Returns None if the schema is already "complete" and rebuilding was not required.
    If rebuilding was required, returns True if rebuilding was successful, otherwise False.
bool - Falsebool - Trueint - 2dict[str, Any] | Nonebool | NoneValidate a pydantic model instance.
Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
Raises: ValidationError: If the object could not be validated.
Returns: The validated model instance.
Anybool | Nonebool | Nonedict[str, Any] | NoneModelUsage docs: https://docs.pydantic.dev/2.7/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
Returns: The validated Pydantic model.
Raises:
    ValueError: If json_data is not a JSON string.
str | bytes | bytearraybool | Nonedict[str, Any] | NoneModelValidate the given object contains string data against the Pydantic model.
Args: obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
Returns: The validated Pydantic model.
Anybool | Nonedict[str, Any] | NoneModelstr | Pathstr | Nonestr - utf8DeprecatedParseProtocol | Nonebool - FalseModelAnyModelstr | bytesstr | Nonestr - utf8DeprecatedParseProtocol | Nonebool - FalseModelbool - Truestr - #/$defs/{model}Dict[str, Any]bool - Truestr - #/$defs/{model}AnystrConvert a list of ModelDTO to a list of json dictionaries.
ListListAnyAnyModelCreate a RichTextBlock from data
RichTextBlockDataBasestrRichTextBlock