Back to bricks list
Introduction Getting Started
Architecture
Technical Documentation
Tasks
Barplot Plotly Boxplot Plotly Conda env agent Converter Create a sugar type of food Create folder from files Create json dict Create lab note Create note resource Create robot Decompress file Describe Download an scenario Download resource from a S3 bucket Download resource from external source Eat task Env agent Extract column tags to new row Extract column values to row tags Extract row tags to new column Extract row values to column tags Fly task Folder exporter Fs node extractor Generate lab note from note resource GenerateStreamlitTestApp Histogram Plotly Input Input from task output JSON Dict exporter JSON Dict importer Line Plotly Mamba env agent Melt Merge note resources Move robot Output Pip env agent Python agent R conda env agent R mamba env agent Resource exporter Resource importer Resource picker Resource set exporter Resource stacker Robot add Scatterplot Plotly Select a scenario Select note Select note template Send a scenario to a lab Send the resource to a lab Shell wait Smart interactive plot generator Smart json transformer Smart multi tables transformer Smart plot generator Smart table transformer Streamlit agent Streamlit conda agent Streamlit env agent Streamlit mamba agent Streamlit pip env agent Switch2 Table column aggregator Table column aggregator filter Table column annotator Table column concat Table column data numeric filter Table column data text filter Table column operation mass Table column operations Table column scaler Table column tag aggregator Table column tag unfolder Table column tags deleter Table column tags selector Table columns deleter Table columns selector Table exporter Table importer Table replace Table row aggregator Table row aggregator filter Table row annotator Table row concat Table row data numeric filter Table row data text filter Table row scaler Table row tag aggregator Table row tag unfolder Table row tags deleter Table row tags selector Table rows deleter Table rows selector Table scaler Table transposer Task Task Plotly Text exporter Text importer The travel of `Astro` Transformer Unzip and load resource Update note resource Upload resource to S3 Viewer Violinplot Plotly Wait Wait task Write to file Zip resource [Support] Update process typing name [Support] Update resource typing name
Version

Table column operations

TRANSFORMER
Typing name :  TASK.gws_core.TableColumnOperations Brick :  gws_core

Operations on columns for a table

This task allows you to do mathematical operation on a Table column.

It works with the column names, supports basic operations, comparator, parenthesis and some math functions.

Examples

Let's say you have this Table with the column A, B, C, D

A B C D
1 10 11 -9
2 8 10 -6
3 6 9 -3

Here is few example that you can write in the operations config.

  • Addition : A + B + C
  • Constant : A + 10
  • Subtraction : A - C
  • Multiplication : A * C
  • Division : A / C
  • Exponentiation : A ** C
  • Modulus : A % C
  • Floor division : A // C
  • Advanced exemple : (A + B) / (C * D)

Comparaison

This task support comparaison, it will return the string True or False.

Comparaison operators : ==, !=, >, <, >= and <=

Math functions

This task supports basic math functions : sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs, arctan2 and log10.

Example : log(A)

Define column names

You can define a custom column name in the operations. Example : E = A + B, this will set the result in the E columns.

Multiple operation

Multiple operation are possible but it requires an assignment to a new columns.

For exemple, if you want to create 2 new calculated columns you could do write 2 operation (in 2 different lines) :

E = A + B
F = C - D

The result of the previous operation can also be use for the next operation (here we use the new column E to calculate F) :

E = A + B
F = E - D

Advanced usage

This task uses the eval function of python dataframe. To see all the possibility, check the following link : https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html#expression-evaluation-via-eval

Input

Table
2d excel like table

Output

Table
2d excel like table

Configuration

operations

Operations on columns, see documentation for more info

Type : list

keep_original_columns

Optional

If true, the original columns of the Table will be added at the end of the Table. If false, only the calculcation columns are kept.

Type : bool