Back to bricks list
Introduction Getting Started
Architecture
Technical Documentation
Tasks
Barplot Plotly Boxplot Plotly Conda env agent Converter Create a sugar type of food Create folder from files Create json dict Create lab note Create note resource Create robot Decompress file Describe Download an scenario Download resource from a S3 bucket Download resource from external source Eat task Env agent Extract column tags to new row Extract column values to row tags Extract row tags to new column Extract row values to column tags Fly task Folder exporter Fs node extractor Generate lab note from note resource GenerateStreamlitTestApp Histogram Plotly Input Input from task output JSON Dict exporter JSON Dict importer Line Plotly Mamba env agent Melt Merge note resources Move robot Output Pip env agent Python agent R conda env agent R mamba env agent Resource exporter Resource importer Resource picker Resource set exporter Resource stacker Robot add Scatterplot Plotly Select a scenario Select note Select note template Send a scenario to a lab Send the resource to a lab Shell wait Smart interactive plot generator Smart json transformer Smart multi tables transformer Smart plot generator Smart table transformer Streamlit agent Streamlit conda agent Streamlit env agent Streamlit mamba agent Streamlit pip env agent Switch2 Table column aggregator Table column aggregator filter Table column annotator Table column concat Table column data numeric filter Table column data text filter Table column operation mass Table column operations Table column scaler Table column tag aggregator Table column tag unfolder Table column tags deleter Table column tags selector Table columns deleter Table columns selector Table exporter Table importer Table replace Table row aggregator Table row aggregator filter Table row annotator Table row concat Table row data numeric filter Table row data text filter Table row scaler Table row tag aggregator Table row tag unfolder Table row tags deleter Table row tags selector Table rows deleter Table rows selector Table scaler Table transposer Task Task Plotly Text exporter Text importer The travel of `Astro` Transformer Unzip and load resource Update note resource Upload resource to S3 Viewer Violinplot Plotly Wait Wait task Write to file Zip resource [Support] Update process typing name [Support] Update resource typing name
Version

Melt

TASK
Typing name :  TASK.gws_core.Melt Brick :  gws_core

pandas.melt, Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

Melt from pandas

input : Table

output : Table

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Do not handle multi-index columns.

Input

input_table
2d excel like table

Output

output_table
2d excel like table

Configuration

id_vars

Optional

Column(s) to use as identifier variables.

Type : list

value_vars

Optional

Column(s) to unpivot. If not specified, uses all columns that are not set as *id_vars*.

Type : list

var_name

Optional

Name to use for the 'variable' column. If None it uses `frame.columns.name` or 'variable'.

Type : string

value_name

Optional

Name to use for the 'value' column.

Type : stringDefault value : value

col_level

Optional

If columns are a MultiIndex then use this level to melt.

Type : string

ignore_index

Optional

If True, original index is ignored. If False, the original index is retained. Index labels will be repeated as necessary.

Type : boolDefault value : true